Successive Antiferromagnetic and Superconducting Transitions in an Organic Metal, *κ***-(BETS)₂FeCl₄**

Takeo Otsuka, Akiko Kobayashi, Yasuhisa Miyamoto,† Junji Kiuchi,† Nobuo Wada,† Emiko Ojima,†† Hideki Fujiwara,††

and Hayao Kobayashi*††

Research Centre for Spectrochemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033

†*Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902* ††*Institute for Molecular Science, Okazaki 444-8585*

(Received March 1, 2000; CL-000201)

The ac magnetic measurements on an organic metal, κ- $(BETS)_{2}FeCl_{4}$ down to 60 mK revealed successive antiferromagnetic and superconducting phase transitions at about 0.65 K (≈ T_N) and 0.1 K (≈ T_C), respectively. These transitions correspond to the similar transitions in the Br-analogue, κ- $(BETS)_{2}FeBr_{4}$ but the transition temperatures of $FeCl_{4}$ system are significantly lower than those of FeBr₄ system ($T_N = 2.5$ K; $T_{\rm C}$ = 1.1 K).

In the recent studies on organic conductors, a considerable interest is focused on the systems consisted of π donor molecules and inorganic magnetic anions. More than several years ago, we have examined a series of BETS [= bis(ethylenedithio)tetraselenafulvalene] conductors with tetrahalogeno-metallate anions, $MX₄$ (M=Ga, In, Fe; X=Cl, Br). There are two main modifications in these compounds, λ - and κ -(BETS)₂MX₄.¹ λ -(BETS)₂GaCl₄ is the first BETS superconductor.² The superconducting transition has been recently discovered also in λ -(BETS)₂FeCl₄ at high pressure.³ Furthermore, an unprecedented superconductor-to-insulator transition has been observed in λ-type BETS conductors with mixed magnetic and non-magnetic anions, λ*-* $(BETS)_{2}Fe_{1-x}Ga_{x}Cl_{4}$, where the interaction between localized magnetic moments of Fe³⁺ ions and π conduction electrons play an essential role.⁴ The κ-type compounds have characteristic two-dimensional arrangements of BETS molecules (see Figure 1) and possess metallic states at low temperatures. Recently, we have discovered the first organic metal antiferromagnet exhibiting a superconducting transition, κ -(BETS)₂ FeBr₄.⁵ Although the magnetic susceptibility measurements down to 2K

and the resistivity measurements down to 0.5 K in κ - $(BETS)$ ₂FeBr₄ have revealed the succsessive antiferromagnetic and superconducting transitions,⁵ neither magnetic phase transition down to 2 K nor a superconducting phase transition down to 0.5 K has been found in its Cl analogue κ -(BETS)₂FeCl₄ so far.^{6,7} For the purpose of surveying whether the difference of these two materials is essential or not, we carried out the magnetic measurements on κ -(BETS)₂FeCl₄ in ultralow temperature region using *ac*-SQUID magnetometer.

The crystals of title compound κ -(BETS)₂FeCl₄ were obtained electrochemically from monochlorobenzene solution containing BETS and $(Et_A N)FeCl_A$, according to the method described previously.¹ The *ac* magnetic susceptibilities χ_{ac} were measured in the range 60 mK–7 K. Polycrystalline sample was used. It was cooled by a home-made dilution refrigerator and measured by a home-made cas system based on the *dc*-SQUID magnetometer (Conductus Inc.). The system uses the oscillating field of a few milli-Oe and the frequency 175 Hz. The geomagnetic field of about 300 mOe is reduced by $1/100$ using a μ metal shield. Then, the measurement was done at the field less than 10 mOe. Absolute value of χ_{ac} was calibrated so that the temperature dependences at $2 < T < 7K$ agrees with the χ _p value obtained by the high temperature measurement using another machine.^{8,9} The χ _p value of this compound suggests the high spin states $(S=5/2)$ of Fe³⁺⁸.

The temperature dependence of χ_{ac} of κ -(BETS)₂FeCl₄ is shown in Figure 2. The χ_{ac} value monotonously increased from 7 K with decreasing temperature. It takes a peak at 0.65K, below which χ_{ac} showed a sharp decrease. Then χ_{ac}

Figure 2. The temperature dependence of ac -magnetic susceptibility for κ -(BETS) ${}_{2}$ FeCl₄ (polycrystalline sample).

Figure 3. The temperature dependencies of ac-magnetic susceptibility for κ -(BETS) 2 FeBr₄. (ac-field H perpendicular (\bullet) and parallel (\circlearrowright) to the *ac*-plane (crystal plane), respectively.)

continued to decrease with decreasing temperature, and exhibited a drop around 0.1 K. This drop is so sharp that the χ_{ac} value falls down far across the zero value. Therefore it is considered to be a Meissner signal, i.e., this point is the superconducting phase transition T_C (= 0.1 K, onset).

In order to compare the susceptibility behavior of $FeCl₄$ salt with that of $F \in Br_4$ salt,^{5,10} the susceptibility of κ - $(BETS)$ ₂FeBr₄ was also measured down to 60 mK by using oriented plate crystals. As shown in Figure 3, the susceptibility behavior of FeBr₄ salt quite resembles that of FeCl₄ salt besides the magnitude of the critical temperatures. The anomaly around 2.5 K due to the antiferromagnetic transition ($T_N \approx 2.5$) K) is consistent with the result of previous susceptibility measurements down to 2 K.^{5,10} Almost constant χ_{ac} between 2.5 K and 1 K for the field perpendicular to the conduction plane suggests the antiferromagnetic structure with easy axis parallel to the *ac*-plane (//conduction plane).¹⁰ The susceptibility drop below ca. 1 K corresponds to the superconducting transition at 1.1 K.5,10 The similarity between the susceptibility behavior of κ -(BETS)₂FeBr₄ and that of κ -(BETS)₂FeCl₄ indicates that the magnetic transition of κ -(BETS)₂FeCl₄ at 0.65 K is an antiferromagnetic transition. One can notice that the antiferromagnetic phase transition temperature of κ -(BETS)₂FeCl₄ is exceedingly lower than that of the Br-analogue ($T_N \approx 0.65$ K (Cl), 2.5 K (Br)). It seems that the magnetic interactions among the $Fe³⁺$ spins in κ -(BETS)₂FeCl₄ are significantly weaker than in κ - $(BETS)_{2}FeBr_{4}$. This lowering of T_{N} apparently makes a contradiction from a crystallographic viewpoint; the unit cell of κ- $(BETS)$ ₂FeCl₄ is crystallographically more contracted compared to that of κ -(BETS)₂FeBr₄. For example, the distance between the nearest neighbor anions in κ -(BETS)₂FeCl₄ is shorter $(d_{Fe^{3+}} \cdot F_{Fe^{3+}} = 5.88 \text{ Å})$ than in the Br-analogue $(d_{Fe^{3+}} \cdot F_{Fe^{3+}})$ $= 5.92$ Å). Regarding the pathway of the magnetic interaction among the Fe³⁺ spins, the distance between the Fe³⁺…Fe³⁺ or $Br...Br$ (4.14 Å) is so long that the magnetic interactions through this pathway will not reflect the Néel temperature T_N = 2.5 K for κ -(BETS)₂FeBr₄. It is thought that the magnetic interaction is mediated by the π -electron states of BETS, where the S…X (X=Cl or Br) contact between BETS and FeX₄ plays

a crucial role. However, there is no essential difference in the S…X distances; $d_{S...X} = 3.592$ Å for X = Cl; 3.693 Å for X = Br, both distances are 0.06 Å shorter than the sum of the van

der Waals radii, evenly. Therefore the change of T_N should be explained in terms of the difference of the halogen atom itself. The energy levels of the π-orbital of BETS and *d* orbital of Fe are higher than the *p*-orbital of the halogen atom, and the energy level of the *p*-orbital of Br atom is higher than that of Cl atom. Accordingly the π−*d* interaction between BETS and $FeX₄$ through X atom will be larger in Br salt than in Cl salt. This will lead to the difference in the magnitude of magnetic interaction in κ -(BETS)₂FeX₄. Detailed theoretical analysis is needed in this point to elucidate the universality of the relationship between the π ^{-*d*} interaction and T_N .

The superconducting phase transition temperature of κ- $(BETS)$ ₂FeBr₄ is much higher than that of κ -(BETS)₂FeCl₄. To our experience, T_c of organic superconductor tends to be suppressed with increasing the metallic nature of the system. It should be noted that κ -(BETS)₂FeBr₄ with T_C of 1.1 K exhibits a characteristic resistivity hump around 60 K. While κ- $(BETS)_2FeCl_4$ with T_C of about 0.1 K shows a normal metal behavior down to 0.5 K , indicating the relatively large stability of the metal state.

In conclusion, we found successive antiferromagnetic and superconducting transitions in κ -(BETS)₂FeCl₄. The κ -(BETS)₂ FeX₄ (X=Cl, Br) salts were hereby proved to be a metallic antiferromagnet system, and both of them were found to be a superconductor. But both transition temperatures T_N and T_c of κ -(BETS)₂FeCl₄ are considerably lower than those of κ -(BETS)₂FeBr₄. The lowering of T_N will be rationalized in terms of the energy level of the *p*-orbital of the halogen atom. The lowering of T_c will be related to the stable metal state of κ - $(BETS)_{2}FeCl_4$. More detailed study is needed to clarify the relation between magnetic interaction and superconductivity in these systems.

References

- 1 A. Kobayashi, T. Udagawa, H. Tomita, T. Naito, and H. Kobayashi, *Chem. Lett.*, **1993**, 2179.
- 2 H. Kobayashi, T. Udagawa, H. Tomita, K. Bun, T. Naito, and A. Kobayashi, *Chem. Lett.*, **1993**, 1559; H. Tanaka, A. Kobayashi, A. Sato, H. Akutsu, and H. Kobayashi, *J. Am. Chem. Soc*., **121**, 760 (1999).
- 3 H. Tanaka, T. Adachi, E. Ojima, H. Fujiwara, K. Kato, H. Kobayashi, A. Kobayashi, and P. Cassoux, *J. Am. Chem. Soc.*, **121**, 11243 (1999).
- 4 H. Kobayashi, A. Sato, E. Arai, H. Akutsu, A. Kobayashi, and P. Cassoux, *J. Am. Chem. Soc.*, **119**, 12392 (1997); A. Sato, E. Ojima, H. Akutsu, H. Kobayashi, A. Kobayashi, and P. Cassoux, *Chem. Lett.*, **1998**, 673; A. Sato, E. Ojima, H. Akutsu, Y. Nakazawa, and H. Kobayashi, *Phys. Rev*, **B61**, 111 (2000).
- 5 E. Ojima, H. Fujiwara, K. Kato, H. Kobayashi, H. Tanaka, A. Kobayashi, M. Tokumoto, and P. Cassoux, *J. Am. Chem. Soc.*, **121**, 5581 (1999).
- 6 H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe, and P. Cassoux, *J. Am. Chem. Soc.*, **118**, 368 (1996).
- 7 N. Harrison, C. H. Mielke, D. G. Rickel, L. K. Montgomery, C. Gest, and J. D. Thompson, *Phys. Rev.*, **B57**, 8751 (1998).
- 8 A. Sato, E. Ojima, H. Kobayashi, Y. Hosokoshi, K. Inoue, A. Kobayashi, and P. Cassoux, *Adv. Mater*., **11**, 1192 (1999); E. Ojima, private communication.
- 9 H. Uozaki, K. Okamoto, S. Endo, H. Matsui, K. Ueda, T. Sugimoto, and N. Toyota, *Synth. Met.*, **103**, 1984 (1999).
- 10 H. Fujiwara, E. Ojima, Y. Nakazawa, K. Kato, and H. Kobayashi, to be published.